
hloganal - Harvest Log Analayser Documentation

© Copyright 2016, Taurus Software and Consulting Ltd Page 1

hloganal
A versatile utility for analysing log files from hrefresh, hsync and hco. Can be used to print summaries of check-

outs/synchronizes during a build, generated lists of changed files or bills of materials, and to create discrete change-

sets for use with code analysis tools.

Syntax
 hloganal [-debug] [-sanitize] [-Dname=value] [-cfg configfile] [-nopurge] -exec cmd [arg1 [arg2 ...]]

 hloganal [-debug] [-Dname=value] [-cfg configfile] [-nopurge] -log logfile

 hloganal -scan logfile

-exec mode

Parses the output of cmd looking for the a line matching the <logfile> regular expression. The first sub-

expression is treated as the filename to process (as per -log mode). This is primarily intended for running hrefresh.

Also in this mode, the argument list is scanned for -o and -oa arguments and the parameter is treated as an

additional logfile to process (as per -log mode). This mode is intended for hco and hsync commands.

The -sanitize switch is intended for use with build tools that pass badly formatted filenames to commands (e.g.

double-backslash) and cleans up the command line before use.

The -nopurge switch disables the automatic deletion of all non-append list files.

-log mode

Processes the named logfile, matching <ignore>, <success>, <failure> and <summary> lines. Unmatched lines

and failures are printed to the output. Optionally <copy> and <list> can be used to copy matching files to

another folder tree or write the filenames to a list file. This will work with most Harvest logfiles.

-scan mode

Processes a logfile looking for Harvest-style error, information and warning messages and prints a summary of the

number of occurences of each message number. This is intended to be used in analysing a typical logfile in order to

write a config file for hloganal.

No Warranty

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. It is provided "as is" without warranty of any
kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the program is with you. Should the program prove defective, you assume the
cost of all necessary servicing, repair or correction.

In no event unless required by applicable law the author will be liable to you for damages, including any general, special, incidental or
consequential damages arising out of the use or inability to use the program (including but not limited to loss of data or data being
rendered inaccurate or losses sustained by you or third parties or a failure of the program to operate with any other programs), even if the
author has been advised of the possibility of such damages.

hloganal - Harvest Log Analayser Documentation

© Copyright 2016, Taurus Software and Consulting Ltd Page 2

Configuration File
Config entries are:

<logfile>server_log_regexp<logfile> - used in exec mode to locate logfiles

<ignore>regexp</ignore> - log line to ignore

<success>regexp</success> - log line to count as a success

<failure>regexp</failure> - log line to report and count as a failure

<summary>regexp</summary> - log line indicating check-in or check-out ran

<copy dst="filename">regexp</copy>

 - first sub-expression is treated as a filename, which has the basedir from the <hloganal> element stripped

from it and the file is copied to the named destination folder using the remaining relative path

<list file="filename" append="true|false" multi="true|false">regexp</list>

 - first sub-expression is appended to the named list file - append controls whether the file is appended from the

previous run - default is false. Non-appended files will be purged at the start of processing unless -nopurge is

specified. multi controls whether the first match terminates the search (false), or whether all matches will write

to the list file (true) as would be the case if you wanted to write the same entry to multiple files - default is true.

Regexp Syntax
^ Start of string

$ End of string

. Any character

[a-z] or [^xyz] Characters in range or characters not in range

(sub) Sub-expression (often used by hloganal)

| Alternative

? 0 or 1 occurrences

+ 1 or more occurrences

* 0 or more occurrences

\ Escape character - literal backslash is \\

Examples

Example 1: Summary of a Check-Out

One very common task during a build is to check-out the latest source code from Harvest, reporting any failures.

Unfortunately the interesting messages from Harvest command line tools are written into a separate logfile and

most build systems do not work well with this, forcing us to write wrapper scripts to get at the output. With

hloganal, you can easily get the output direct to the console, filtered to show just the errors:

hloganal -cfg example1.xml -exec hco -b broker -en project -st state

-sy -vp viewpath -cp clientpath -eh dfofile

hloganal - Harvest Log Analayser Documentation

© Copyright 2016, Taurus Software and Consulting Ltd Page 3

Where example1.xml contains:

<hloganal>

 <ignore>^I00060040:</ignore>

 <success>^I00020110:</success>

 <success>^I00020052:</success>

 <failure>^E[0-9]+:</failure>

 <summary>^I00060080:</summary>

</hloganal>

In the sample input logfile below, the green lines will be considered successes and red as failures. The light blue

indicates the summary line, which can be used to detect a partially successful checkout. The dark blue line is

unmatched and will be output verbatim.

I00060040: New connection with Broker mybkr established.

I00020110: File \demo\DOCS\DXY2PS.TXT;1 checked out to mybkr\\C:\temp\DOCS\DXY2PS.TXT .

I00020110: File \demo\DOCS\HPGL2PS.TXT;1 checked out to mybkr\\C:\temp\DOCS\HPGL2PS.TXT .

I00020110: File \demo\DOCS\README.TXT;1 checked out to mybkr\\C:\temp\DOCS\README.TXT .

I00020110: File \demo\TESTDATA\DXYTEST\TEST1.DXY;1 checked out to

mybkr\\C:\temp\TESTDATA\DXYTEST\TEST1.DXY .

I00020052: No need to update file C:\temp\DOCS\DXY2PS.TXT from repository version

\demo\DOCS\DXY2PS.TXT;2 .

E03020028: The File Agent error for item mybkr\\C:\temp\DOCS\HPGL2PS.TXT : Permission denied. .

I00060080: Check out summary: Total: 4 ; Success: 4 ; Failed: 0 ; Not Processed: 0 .

Checkout has been executed successfully.

As you can see in the output below, the error and unmatched lines are reported, but the remaining lines are

completely digested into a series of counts. From this we can see that 5 items were successfully checked out (or not

changed), 1 item failed (with the reported error) and 1 line was ignored (the connection with broker line).

Processing hco.log...

E03020028: The File Agent error for item mybkr\\C:\temp\DOCS\HPGL2PS.TXT : Permission denied. .

Checkout has been executed successfully.

success: 5

failure: 1

ignore: 1

summary: 1

unmatched: 1

1 failures detected

Example 2: List of Changed Files

During continuous integration builds, it is very useful to know what files changed between the current build and the

previous build. Using either hsync/hrefresh or hco in sync mode, you will get a logfile containing a list of checkouts

for the changed files, as well as a large number of lines for files that did not need to be updated. With hloganal we

can take just the checkout lines, extract the filename component and then write this to a separate "change list" file,

for later inclusion into the build output, or to drive other build tools:

hloganal -cfg example2.xml -exec hsync -b broker -en project -st state -vp viewpath -cp clientpath -sy -fv

-iv -o logfile -eh dfofile

In example2.xml you will see that the regular expression for the checkout lines contains a sub-expression (in round

brackets) which matches the client filename portion of the message (excluding the broker name):

<hloganal>

 <list file="changes.txt" append="false" multi="false">^I00020110: File .+ checked out to

.+\\\\(.+) \.</list>

</hloganal>

hloganal - Harvest Log Analayser Documentation

© Copyright 2016, Taurus Software and Consulting Ltd Page 4

Given the same input as the previous example, changes.txt will now contain:

C:\temp\DOCS\DXY2PS.TXT

C:\temp\DOCS\HPGL2PS.TXT

C:\temp\DOCS\README.TXT

C:\temp\TESTDATA\DXYTEST\TEST1.DXY

Example 3: Bill of Materials

For production builds, it is important to know the versions of every source item that went into the build. Similar to

the change list, we can make use of the output from hsync/hrefresh or hco to get a list of every source item and its

mapped version number from Harvest. The no need to update messages helpfully include the repository path and

mapped version of the item, as to the checkout lines. With hloganal we can extract this information into a bill of

materials file:

hloganal -cfg cfgfile -exec hrefresh -b broker -pr project -st state -iv

Note that with hrefresh, the viewpath, clientpath and dfofile all come from the hrefresh config file. hrefresh runs

hsync under the covers, but unlike hsync, hrefresh can only check-out to an agent. For hloganal to find the logfile

produced by hsync when run in this way, it requires and extra <logfile> tag which matches the logfile location

message from hrefresh.

Where example3.xml contains:

<hloganal>

 <logfile>See server log file (.+) for details</logfile>

 <list file="bom.txt">^I00020110: File (.+) checked out to .+ \.</list>

 <list file="bom.txt">^I00020052: No need to update file .+ from repository version (.+)

\.</list>

</hloganal>

Given the same input as the previous examples, bom.txt will now contain:

\demo\DOCS\DXY2PS.TXT;1

\demo\DOCS\HPGL2PS.TXT;1

\demo\DOCS\README.TXT;1

\demo\TESTDATA\DXYTEST\TEST1.DXY;1

\demo\DOCS\DXY2PS.TXT;2

Example 4: Change-Sets

Code analysis tools are often used to check coding standards. On large codebases, it can take a long time to scan the

entire codebase and developers are quickly overwhelmed with warning messages. It is often more useful to scan

just the changed files and send a report at a given time interval, e.g. daily. To do this, all we need to do is to run

hsync/hrefresh on a schedule and pass the output through hloganal. In response to a checkout message, we direct

hloganal to copy the file to a temporary folder. After scanning the log, we have a folder containing just the changed

files, which we can give to the code analysis tool.

<hloganal basedir="C:\temp">

 <copy dst="C:\temp2">^I00020110: File .+ checked out to .+\\\\(.+) .</copy>

</hloganal>

Example 5: Scan Mode

In scan mode, the hloganal looks for messages in the standard Harvest format and simply counts the number of each

type. The command used is slightly different and it can only be used with an existing logfile:

hloganal -scan logfile

hloganal - Harvest Log Analayser Documentation

© Copyright 2016, Taurus Software and Consulting Ltd Page 5

Again given the same input as the other examples, the output looks like this:

Scanning hco.log...

I00020110 4

I00060080 1

I00020052 1

I00060040 1

E03020028 1

This information is intended to aid writing config files for hloganal, but it can be useful for other purposes.

	hloganal
	Syntax
	-exec mode
	-log mode
	-scan mode

	Configuration File
	Regexp Syntax
	Examples
	Example 1: Summary of a Check-Out
	Example 2: List of Changed Files
	Example 3: Bill of Materials
	Example 4: Change-Sets
	Example 5: Scan Mode

